设f(x)是定义在R上的函数,对m,n属于R恒有f(m+n)=f(m)*f(n),且当x>0时,01,求x的范围

问题描述:

设f(x)是定义在R上的函数,对m,n属于R恒有f(m+n)=f(m)*f(n),且当x>0时,01,求x的范围

证明:(1)∵m,n∈R恒有f(m+n)=f(m)•f(n),
令m=0
则f(n)=f(0)•f(n),
则f(0)=1
(2)由(1)中结论可得:
令m=-n
则f(0)=f(-n)•f(n)=1,
∴f(x)与f(-x)互为倒数,
∵当x>0时,0<f(x)<1,
∴当x<0时,f(x)>1,
又由x=0时,f(0)=1
故当x∈R时,恒有f(x)>0;
(3)设x1>x2,
∴f(x1)=f(x2+(x1-x2))=f(x2)•f(x1-x2)
由(2)知当x∈R时,恒有f(x)>0,
所以f(x1)f(x2)=f(x1-x2)<1
所以f(x1)<f(x2)
∴f(x)在R上是减函数

1、令m=n,则f(2m)= f²(m/2)》0所以f(x)= f²(x/2)在实数上非负.令n=0,m>0,则f(m+0)= f(m) f(0),由此可得到f(0)=1令m=-n>0,-m0时,0.2、令n为一无限小的正实数,则m+n略大于m则f(m+n)/ f(m)= f(m) f(n)/f(m)=f...