定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1
问题描述:
定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1
答
f(4)=-1
f(8)=-2
因为f(4)=f(8*1/2)=f(8)+f(1/2)
-1=-2+f(1/2)
f(1/2)=1
所以f(x^2-3x)>1即
f(x^2-3x)>f(1/2)
可以证明f(x)是减函数(用定义)
0