证明,lim(a^n/n!)=0 n-∞

问题描述:

证明,lim(a^n/n!)=0 n-∞

a>0时
设bn=a^n/n!
则b(n+1)=[a/(n+1)]b(n)
∴存在N: n>N时,0∴n>N时,b(n+1)又bn>0
∴n→∞时bn存在极限,设为A
lim(n→∞)b(n+1)=lim(n→∞)[a/(n+1)]b(n)
A=A*lim(n→∞)[a/(n+1)]
∴A=0
即lim(n→∞)b(n)=lim(n→∞)(a^n/n!)=0
a由上面证明知lim(n→∞)|a^n/n!|=0
∴lim(n→∞)(a^n/n!)=0
a=0时,显然a^n/n!恒为0
综上可知lim(n→∞)(a^n/n!)=0

令N= [a]+1,则当n>N时,有n>a,且a/(N+1)N时,a^n/n!
=a/1 * a/2 * ...* a/N * a/(N+1) * ...a/n