三角形ABC中,角BAC是直角,AC大于AB,AD是高,M是BC的中点,求证AC^2-AB^2=2*DM*BC

问题描述:

三角形ABC中,角BAC是直角,AC大于AB,AD是高,M是BC的中点,求证AC^2-AB^2=2*DM*BC

AC/BC=DC/AC(△ADC∽△ABC)∴AC^2=BC*DC
同理△BDA∽△ABC ∴AB^2=BC*BD
∴AC^2-AB^2=BC*CD-BC*BD=BC*(CD-BD)
CM=BM BM-BD=DM CM-BD=DM
∴AC^2-AB^2=BC*DM

AB^2=BD^2+AD^2
AC^2=DC^2+AD^2
AC^2-AB^2=DC^2+AD^2-BD^2-AD^2
=DC^2-BD^2
=(DC+BD)(DC-BD)
DC+BD=BC
DC-BD=DM+CM-BD=DM+BM-BD=DM+DM+BD-BD=2*DM
AC^2-AB^2=2*DM*BC