求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)

问题描述:

求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)

答:
利用调和级数欧拉常数表达式:
1+1/2+1/3+1/4+...1/n = ln[n+1]+r[欧拉常数]
1/(n+1)+1/(n+2)+......+1/(n+n)
=1+1/2+1/3+……+1/n+1/(n+1)+1/(n+2)+......+1/(n+n)-(1+1/2+1/3+……+1/n)
=∑1/(n+n)-∑1/n
=ln[2n+1]-ln[n+1]
=ln[(2n+1)/(n+1)]
所以:
原式=lim(n→∞)ln[(2n+1)/(n+1)]=ln[2]

函数f(x)=1/(1+x).用分点将区间[0,1]平均分成n份,分点是 x[k]=k/n,k=1,2,...,n.利用定积分的定义,和式 ∑{f(x[k])*(1/n),k=1...n} 当n->∞时的极限等于定积分 ∫{f(x)dx,[0,1]} 而f(x[k])*(1/n)=1/(n+k),通项相等,...