在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2和cb=12+3,求∠A和tanB的值.

问题描述:

在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2

c
b
=
1
2
+
3
,求∠A和tanB的值.

由b2+c2-bc=a2,根据余弦定理得cosA=b2+c2−a22bc=bc2bc=12>0,则∠A=60°;因此,在△ABC中,∠C=180°-∠A-∠B=120°-∠B.由已知条件,应用正弦定理12+3=cb=sinCsinB=sin(120°−B)sinB=sin120°cosB−cos120°s...
答案解析:根据余弦定理表示出cosA,把已知条件b2+c2-bc=a2代入化简后,根据特殊角的三角函数值及cosA大于0即可得到∠A;利用三角形的内角和定理和∠A表示出∠C与∠B的关系,然后根据正弦定理得到

c
b
sinC
sinB
相等,把∠C与∠B的关系代入到
sinC
sinB
中,利用两角差的正弦函数公式及特殊角的三角函数值化简后得到一个关于cotB的方程,求出方程的解即可得到cotB的值,根据同角三角函数的关系即可得到tanB的值.
考试点:余弦定理;正弦定理.
知识点:此题考查学生灵活运用余弦、正弦定理化简求值,灵活运用三角形的内角和定理、两角差的正弦函数公式及特殊角的三角函数值化简求值,是一道中档题.