设曲线上的一点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分,试写出该曲线所满足的微分方程.
问题描述:
设曲线上的一点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分,试写出该曲线所满足的微分方程.
答
设曲线方程为y=f(x)则切线在P(x,y)处的切线的的斜率为y'=f'(x)法线的斜率为k=-1/y'在点(x0,y0)处法线的方程为y-y0=-(x-x0)/[y'0] //y'0代表y'在x0处的值该法线与x轴的交点为(y0y'0+x0,0)由题意点(x0,y0)与点(y0y'0+x...