设曲线L上任一点P(x,y)处的法线与x轴的交点为Q,线段PQ恰被y轴平分,且L过点P0(2,2).试求曲线L的方程.

问题描述:

设曲线L上任一点P(x,y)处的法线与x轴的交点为Q,线段PQ恰被y轴平分,且L过点P0(2,2).试求曲线L的方程.

设Q(t,0),则PQ的中点为((x+t)/2,y/2)该点在y轴上,则:x+t=0,得:t=-x即Q(-x,0)K(PQ)=y/2x则点P处的切线斜率k=-2x/y即:f'(x)=-2x/f(x)f'(x)f(x)=-2x2f(x)f'(x)=-4x两边积分得:f²(x)=-2x²+C把f(2)=2代入...