一道微分方程问题曲线上点(x,y)处的法线与x轴的焦点为Q,且线段PQ被Y轴平分,请问怎么用微分方程表示这条曲线?最好说明一下,

问题描述:

一道微分方程问题
曲线上点(x,y)处的法线与x轴的焦点为Q,且线段PQ被Y轴平分,请问怎么用微分方程表示这条曲线?最好说明一下,

由题意可求到与两轴的交点坐标(-x,0)、(0,y/2)所以法线斜率K=y/2x所以可知所求直线的斜率即dy/dx=-2x/y 此时两边对x,y进行不定积分有:§ydy=§-2xdx整理得:y^2=-2x^2+C(常数)