如题:一直数列{an}的前n项和Sn与an满足:an,Sn,Sn-1/2(n大于等于2)成等比数列,且a1=1,求数列{an}的前n项和Sn.
问题描述:
如题:一直数列{an}的前n项和Sn与an满足:an,Sn,Sn-1/2(n大于等于2)成等比数列,且a1=1,
求数列{an}的前n项和Sn.
答
由题意,an/Sn=Sn/(Sn-1/2)
即(Sn-Sn-1)/Sn=Sn/(Sn-1/2)
整理得2Sn*Sn-1+Sn-Sn-1=0
即1/Sn=2+1/Sn-1
所以{1/Sn}是首项为1,d=2的等差数列
所以1/Sn=1+(n-1)*2=2n-1
所以Sn=1/(2n-1) (n>=2时)
经检验,n=1也符合题意
所以Sn=1/(2n-1)
答
(1)由Sn^2=an(Sn-1/2),an=Sn-Sn-1(n≥2)得Sn^2=(Sn-Sn-1)(Sn- 1/2)即2Sn-1Sn=Sn-1-Sn.由题意知Sn-1Sn≠0,上式两边同除以Sn-1Sn得1/Sn - 1/Sn-1=2∴{1/Sn}是首项为1,公差为2的等差数列,∴1/Sn=1+2(n-1)=2n-1,Sn=1/(...