求极限:lim (2-(xy+4)^0.5)/(x^2+y^2)^0.5 (x,y)→(0,0)

问题描述:

求极限:lim (2-(xy+4)^0.5)/(x^2+y^2)^0.5 (x,y)→(0,0)

令xy=t
原式= [2-(t+4)^0.5]/t * t/(x^2+y^2)^0.5 其中t→0
= -1/[2+(t+4)^0.5]* t/(x^2+y^2)^0.5
= -1/4*xy/(x^2+y^2)^0.5
= -1/4* 1/(1/X^2+1/y^2)^0.5
= 0