求lim(x→0,y→0) ysin(1/xy)的极限
问题描述:
求lim(x→0,y→0) ysin(1/xy)的极限
答
lim(x→0,y→0) ysin(1/xy)
=(lim(y→0) y)*lim(x→0,y→0) sin(1/xy)
由于lim(y→0) y=0,是无穷小量
|lim(x→0,y→0) sin(1/xy)|≤1,是有界量
根据无穷小量乘以有界量等于无穷小量知
lim(x→0,y→0) ysin(1/xy)=0
答
lim(x→0,y→0) ysin(1/xy)=(lim(y→0) y)*lim(x→0,y→0) sin(1/xy)由于lim(y→0) y=0,是无穷小量|lim(x→0,y→0) sin(1/xy)|≤1,是有界量根据无穷小量乘以有界量等于无穷小量知lim(x→0,y→0) ysin(...