已知数列{an},其中a1=-1/3,an=(an-1-1)/(an-1+3),令Cn=1/(an+1) (1)求证 {Cn}是等差数列;(2)求an

问题描述:

已知数列{an},其中a1=-1/3,an=(an-1-1)/(an-1+3),令Cn=1/(an+1) (1)求证 {Cn}是等差数列;(2)求an

an=(an-1-1)/(an-1+3)
an+1=(an-1-1)/(an-1+3)+1=(2an-1+2)/(an-1+3)
1/(an+1)=(an-1+3)/(2an-1+2)=1/an-1+1/2
即 Cn=cn-1+1/2
{Cn}是等差数列
cn=(n+2)/2
1/(an+1)=(n+2)/2
an=-n/(n+2)