求证不等式

问题描述:

求证不等式
a^n+b^n≧a^(n-1)b+b^(n-1)a a和b都大于0,请写写思路和过程万分感谢!

证明:
要证a^n+b^n≧a^(n-1)b+b^(n-1)a
即证明 a^n+b^n-a^(n-1)b-b^(n-1)a ≥0
左式=a^(n-1)(a-b)-b^(n-1)(a-b)
=[a^(n-1)-b^(n-1)](a-b)
1.若a>b,则a^(n-1)>b^(n-1) => a^(n-1)-b^(n-1)>0
那么[a^(n-1)-b^(n-1)](a-b)>0
2.若a