矩形ABCD,F在AD上,E是DC的中点,联结B,F,BF垂直EF,
问题描述:
矩形ABCD,F在AD上,E是DC的中点,联结B,F,BF垂直EF,
AB=6,AF=2,求EF的长.
(要有完整的全过程)
答
AF=√(AB^2+AF^2)=2√10,DE=DC/2=AB/2=3
∵∠AFB+∠ABF=90,∠AFB+∠DFE=90
∴∠ABF=∠DFE
∴RT△AFB≈RT△DEF
∴AF/FB=DE/EF,即
2/(2√10)=3/EF
EF=3√10