已知函数y=2cos(wx+α)(x∈R,w>0,0≤α≤π/2)图象与y轴相交于点M(0,√3),函数最小正周期为π
问题描述:
已知函数y=2cos(wx+α)(x∈R,w>0,0≤α≤π/2)图象与y轴相交于点M(0,√3),函数最小正周期为π
(1)求α和w的值.
(2)已知点A(π/2,0)点P是该函数图象上一点,点Q(X0,y0)是PA的中点,当y0=√3/2,x0∈[π/2,π]时,求x0的值.
答
1、
T=2π/w=π
得:w=2
则:y=2cos(2x+α)
把点(0,√3)代入得:√3=2cosα
则:cosα=√3/2
因为0≤α≤π/2
所以,α=π/6
2、
由(1)知:y=2cos(2x+π/6)
A(π/2,0),Q(x0,y0),Q是PA中点,则:P(2x0-π/2,2y0)
点P在函数图象上,所以:2y0=2cos[2(2x0-π/2)+π/6]
即:y0=cos(4x0-5π/6)
y0=√3/2
即:cos(4x0-5π/6)=√3/2
因为x0∈[π/2,π]
则:4x0-5π/6∈[11π/6,19π/6]
要满足cos(4x0-5π/6)=√3/2
则:4x0-5π/6=11π/6或13π/6
得:x0=2π/3或x0=3π/4