如图,三棱锥P-ABC中,PA=a,AB=AC=2a,∠PAB=∠PAC=∠BAC=60°,求三棱锥P-ABC的体积.

问题描述:

如图,三棱锥P-ABC中,PA=a,AB=AC=2a,∠PAB=∠PAC=∠BAC=60°,求三棱锥P-ABC的体积.

如图,取AB、AC的中点M、N,连接PM,PN,MN,
则PA=AM=AN=a,由∠PAB=∠PAC=∠BAC=60°,
得:PM=PN=MN=a,∴三棱锥P-AMN是棱长为a的正四面体,它的体积为,
VP-AMN=

1
3
•S△AMN•h=
1
3
×
1
2
×a2×sin60°×
a2 −(
2
3
× 
3
2
a)
2
=
2
12
a3
三棱锥P-ABC的体积为,VP-ABC=
1
3
•S△ABC•h=
1
3
×4•S△AMN•h=4VP-AMN=
2
3
a3