已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.

问题描述:

已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.

∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴DE=AF,
又∵AB=AC=10,
∴∠B=∠C,
∵DF∥AB,
∴∠CDF=∠B,
∴∠CDF=∠C,
∴DF=CF,
∴AC=AF+FC=DE+DF=10.
答:DE+DF的值是10.
答案解析:由题意可得四边形AEDF是平行四边形,得DE=AF再由等腰三角形的性质及平行线可得DF=CF,进而可求出其结论.
考试点:平行四边形的判定与性质;等腰三角形的判定与性质.
知识点:本题主要考查平行四边形的判定及性质以及等腰三角形的性质问题,能够熟练求解.