正四面体A-BCD(四个面都是等边三角形的三棱锥)中,E为BC中点,求异面直线AE与BD所成角的余弦值.
问题描述:
正四面体A-BCD(四个面都是等边三角形的三棱锥)中,E为BC中点,求异面直线AE与BD所成角的余弦值.
答
取CD中点F,连接EF、AF,可得∵△BCD中E、F分别为BC、CD的中点,∴EF∥BD,EF=12BD因此,∠AEF(或其补角)即为异面直线AE与BD所成的角,设正四面体棱长为a,由题意可得AF=AE=32a,EF=12a,∴在△AEF中,根据余弦定...