设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为( ) A.抛物线 B.双曲线 C.椭圆 D.圆
问题描述:
设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为( )
A. 抛物线
B. 双曲线
C. 椭圆
D. 圆
答
设C的坐标为(x,y),圆C的半径为r,圆x2+(y-3)2=1的圆心为A,
∵圆C与圆x2+(y-3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r
∴|CA|=d+1,即动点C定点A的距离等于到定直线y=-1的距离
由抛物线的定义知:C的轨迹为抛物线.
故选A