已知{an}是等比数列,an>0,sn=a1+a2+.an,Tn=1/a1+1/a2+.1/an,求证a1a2.an=(sn/Tn)^n/2

问题描述:

已知{an}是等比数列,an>0,sn=a1+a2+.an,Tn=1/a1+1/a2+.1/an,求证a1a2.an=(sn/Tn)^n/2

Sn=a1(1-q^n)/(1-q)
Tn=1(1-1/q^n)/a1(1-1/q)
a1a2……an=a1^nq^(1+2+……+n-1)={a1q^[(n-1)/2]}^n
(sn/Tn)^n/2=[a1^2q^(n-1)]^n/2={a1q^[(n-1)/2]}^n=a1a2……an