(理){an}是等差数列,公差d>0,Sn是{an}的前n项和.已知a2a3=40.S4=26. (1)求数列{an}的通项公式an; (2)令bn=1/anan+1,求数列{bn}前n项和Tn.
问题描述:
(理){an}是等差数列,公差d>0,Sn是{an}的前n项和.已知a2a3=40.S4=26.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}前n项和Tn. 1
anan+1
答
(1)∵S4=
(a1+a4)=2(a2+a3)=26,…(2分)4 2
又∵a2a3=40,d>0,
∴a2=5,a3=8,d=3.…(4分)
∴an=a2+(n-2)d=3n-1.…(6分)
(2)∵bn=
=1
anan+1
=1 (3n−1)(3n+2)
(1 3
−1 3n−1
),…(9分)1 3n+2
故有 Tn=
[(1 3
−1 2
)+(1 5
−1 5
)+…+(1 8
−1 3n−1
)]=1 3n+2
(1 3
−1 2
)=1 3n+2
.…(12分)n 2(3n+2)