(理){an}是等差数列,公差d>0,Sn是{an}的前n项和.已知a2a3=40.S4=26. (1)求数列{an}的通项公式an; (2)令bn=1/anan+1,求数列{bn}前n项和Tn.

问题描述:

(理){an}是等差数列,公差d>0,Sn是{an}的前n项和.已知a2a3=40.S4=26.
(1)求数列{an}的通项公式an
(2)令bn

1
anan+1
,求数列{bn}前n项和Tn

(1)∵S4

4
2
(a1+a4)=2(a2+a3)=26,…(2分)
又∵a2a3=40,d>0,
∴a2=5,a3=8,d=3.…(4分)
∴an=a2+(n-2)d=3n-1.…(6分)
(2)∵bn
1
anan+1
1
(3n−1)(3n+2)
1
3
(
1
3n−1
1
3n+2
)
,…(9分)
故有 Tn
1
3
[(
1
2
1
5
)+(
1
5
1
8
)+…+(
1
3n−1
1
3n+2
)]
=
1
3
(
1
2
1
3n+2
)=
n
2(3n+2)
.…(12分)