对于定义域为d的函数y=f(x),若同时满足下列条件1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=3/4x+1/x(x大于0)是否为闭函数,说明理由 3.判断函数y=k+根号下x+2是否为闭函数,若是.求出k的取值范围
问题描述:
对于定义域为d的函数y=f(x),若同时满足下列条件
1.f(x)在d内单调递增或单调递减 2.存在区间【a,b】上的值域为【a,b】,把f(x)叫闭函数.1.求闭函数y=-x的三方符合条件2的区间 2.判断f(x)=3/4x+1/x(x大于0)是否为闭函数,说明理由 3.判断函数y=k+根号下x+2是否为闭函数,若是.求出k的取值范围
答
(1)、∵y=-x³是[a,b]上的减函数∴f(a)=-a³=bf(b)=-b³=a∴a/b=±1又∵-a³=b,∴a=-1,b=1∴所求区间为[-1,1](2)、∵f′(x)=3/4-1/x²,x∈(0,+∞),令f′(x)=3/4-1/x²>0,得x>(2/3)根...