对于区间[a,b],若函数y=f(x)同时满足下列两个条件:1.函数y=f(x)在[a,b]上是单调函数;2.函数y=f(x) ,x∈[对于区间[a,b],若函数y=f(x)同时满足下列两个条件:1.函数y=f(x)在[a,b]上是单调函数;2.函数y=f(x) ,x∈[a,b]的值域是[a,b]为函数y=f(x)的保值区间。函数y=x^2+m(m≠0)是否存在保值区间?若存在,求出相应的实数m的取值范围;若不存在,试说明理由
问题描述:
对于区间[a,b],若函数y=f(x)同时满足下列两个条件:1.函数y=f(x)在[a,b]上是单调函数;2.函数y=f(x) ,x∈[
对于区间[a,b],若函数y=f(x)同时满足下列两个条件:1.函数y=f(x)在[a,b]上是单调函数;2.函数y=f(x) ,x∈[a,b]的值域是[a,b]为函数y=f(x)的保值区间。函数y=x^2+m(m≠0)是否存在保值区间?若存在,求出相应的实数m的取值范围;若不存在,试说明理由
答
由于函数y=f(x)在[a,b]上是单调函数,于是a,b必须位于函数y=x²+m对称轴x=0的两侧,也即aa≥0,下面分类讨论:
(1)若a