已知直线l与圆x2+y2+2x=0相切于点T,且与双曲线x2-y2=1相交于A、B两点.若T是线段AB的中点,求直线l的方程.
问题描述:
已知直线l与圆x2+y2+2x=0相切于点T,且与双曲线x2-y2=1相交于A、B两点.若T是线段AB的中点,求直线l的方程.
答
直线l与x轴不平行,设l的方程为 x=ky+a,代入双曲线方程 整理得(k2-1)y2+2kay+a2-1=0. 而k2-1≠0,于是y T=yA+yB2=−akk2−1,从而xT=kyT+a=−ak2−1,即T(a1−k2,ak1−k2).∵...