x>0,y>0,且xy-(x+y)=1,求2x+3y的最小值 用基本不等式
问题描述:
x>0,y>0,且xy-(x+y)=1,求2x+3y的最小值 用基本不等式
答
xy-(x+y)=1→x(y-1)/(y+1)=1>0,x>0,y>0
所以,x>1,y>1
1=xy-(x+y)≤(√xy)²-2√xy
即(√xy)²-2√xy+1≥2
(√xy-1)²≥2
√xy-1≥√2
√xy≥√2+1
2x+3y≥2√6xy≥2√6(1+√2)=2√6+4√3
答
∵x+y≥2√xy
xy-(x+y)-1=0,得xy-2√xy-1≥0→(√xy-1)^2-2≥0→√xy≥1+√2
2x+3y≥2√6xy≥2√6(1+√2)=2√6+4√3