已知椭圆c:x²/a²+y²/b²=1(a>b>0)过点p(2,1),离心率e=(根号3)/2
已知椭圆c:x²/a²+y²/b²=1(a>b>0)过点p(2,1),离心率e=(根号3)/2
直线L与椭圆c交于A,B两点(A,B均异于P),且有PA向量点乘PB向量=0,求证直线L过定点
椭圆C:x²/a²+y²/b²=1(a>b>0)过点P(2,1),
∴4/a^2+1/b^2=1,①
离心率e=c/a=√3/2,
∴a^2=4c^2/3,b^2=c^2/3,代入①,6/c^2=1,c^2=6,
∴a^2=8,b^2=2,椭圆C的方程是x^2/8+y^2/2=1.②
设L:y=kx+m,③
代入②*8,得x^2+4(k^2x^2+2kmx+m^2)=8,
整理得(1+4k^2)x^2+8kmx+4m^2-8=0,
设A(x1,y1),B(x2,y2),则x1+x2=-8km/(1+4k^2),x1x2=(4m^2-8)/(1+4k^2),
向量PA*PB=(x1-2,y1-1)*(x2-2,y2-1)
=(x1-2)(x2-2)+(kx1+m-1)(kx2+m-1)(由③)
=(1+k^2)x1x2+[k(m-1)-2](x1+x2)+4+(m-1)^2
=[(1+k^2)(4m^2-8)-8km(km-k-2)]/(1+4k^2)+4+(m-1)^2=0,
∴(1+k^2)(4m^2-8)-8km(km-k-2)+(1+4k^2)[4+(m-1)^2]=0,
整理得4k^2*[m^2-2-2m^2+2m+4+(m-1)^2]+16km+4m^2-8+4+(m-1)^2=0,
12k^2+16km+5m^2-2m-3=0,
解得k=(1-m)/2,或k=-(5m+3)/6,
∴L:y=(1-m)x/2+m,(A,B均异于P,舍)
或y=-(5m+3)x/6+m,过定点(6/5,-3/5).证完.您是如何用那个解析式判断定点是多少的呢?
希望能提供具体思路,谢谢!把y=-(5m+3)x/6+m变为y=-3x/6+m(-5x/6+1),
由-5x/6+1=0得x=6/5,代入上式得y=-3/5.