证明不等式1/ln2+1/ln3+1/ln4+……+1/ln(n+1)
问题描述:
证明不等式1/ln2+1/ln3+1/ln4+……+1/ln(n+1)
更正:提问中的π/2应是n/2
答
考虑函数f(x) = 2x/(x+2)-ln(1+x).
有f'(x) = 4/(x+2)²-1/(1+x) = -x²/((x+2)²(x+1)).
x > 0时, f'(x) 有f(x) 于是对任意正整数k, 成立1/ln(1+k) 对k从1到n求和即得1/ln(2)+1/ln(3)+...+1/ln(n+1)