高中数学证明 对于任意正整数m n 不等式1/ln(m+1) + 1/ln(m+2) +...+1/ln(m+n) > n / m(m+n) 恒成立

问题描述:

高中数学证明 对于任意正整数m n 不等式1/ln(m+1) + 1/ln(m+2) +...+1/ln(m+n) > n / m(m+n) 恒成立
O(∩_∩)O 谢谢啦!

利用放缩法,需要把左式放小,既左式分母放大,你应该知道吧:lnX小于等于X-1.所以左式可放小为1/M+1/(M+1).+1/(m+n-1),继续放小左式为n/(m+n-1)所以只需证明m+n-1)小于 m(m+n),做差在提公因式就OK乐