如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE∥BC与AB相交于E.AB=5cm、AC=2cm,则△ADE的周长=_cm.
问题描述:
如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE∥BC与AB相交于E.AB=5cm、AC=2cm,则△ADE的周长=______cm.
答
∵DB平分∠ABC,
∴∠ABD=∠CBD;
∵BD⊥AC,即∠ADB=∠CDB=90°,
∴∠A=∠C,即△ABC是等腰三角形;
∴D是AC的中点,即AD=
AC=1cm;1 2
∵DE∥BC,
∴∠EDB=∠CBD;
又∵∠ABD=∠CBD,
∴∠EBD=∠EDB,即BE=DE;
∴△ADE的周长=AD+DE+AE=AD+AE+BE=AD+AB=1+5=6cm.
故△ADE的周长为6cm.