已知y=(k+2)x^(k^2+k-4)是二次函数,且图像的开口向下.
问题描述:
已知y=(k+2)x^(k^2+k-4)是二次函数,且图像的开口向下.
(1)求k的值;(2)画出函输的图像;(3)根据图像指出该抛物线的对称轴和顶点坐标.
答
(1)∵y=(k+2)x^(k^2+k-4)是二次函数
∴ k^2+k-4=2
解得k=2
或k=-3
又y图像的开口向下
∴k+2<0.k<-2
∴k=-3
(3)∴y= -x^2
对称轴x= -b/2a=-0/-2=0 即图像对称轴为y轴
顶点坐标(0,0)