数学数列的裂项相消
问题描述:
数学数列的裂项相消
一般的形式是什么,举例说明.
答
裂项相消法求和
把数列的通项拆成两项之差或正负相消,剩下首位若干项.
常见的拆项:
⑴1/〔n(n+1)〕=1/n-1/(n+1)
⑵1/(2n-1)(2n+1)=1/2〔1/(2n-1)-1/(2n+1)〕
⑶1/〔n(n+1)(n+2)〕=1/2{1/〔n(n+1)-1/〔(n+1)(n+2)〕}
⑷n*n!=(n+1)!-n!
n/〔(n+1)!〕=1/n!-1/(n+1)!
根据形式你可以举出很多例子来
其中第四种是阶乘,即n!=n(n-1)(n-2).1
比较少用因为是用电脑打的,分式看起来有点繁琐,其实形式很简单的,楼主只要细心一点就行,我都不怕麻烦~