设x=e^(-t) 试变换方程x^2 d^2y/dx^2 +xdy/dx+y=0
问题描述:
设x=e^(-t) 试变换方程x^2 d^2y/dx^2 +xdy/dx+y=0
网上有种解法如下(网友franciscococo提供):
x=e^(-t),即dx/dt= -e^(-t)
那么dy/dx=(dy/dt) / (dx/dt)= -e^t *dy/dt,
而
d^2y/dx^2
= [d(dy/dx) /dt] * dt/dx
= [-e^t *d^2y/dt^2 -e^t *dy/dt] * (-e^t)
=e^(2t) *d^2y/dt^2 +e^(2t) *dy/dt
所以x^2 d^2y/dx^2= d^2y/dt^2 +dy/dt,
而xdy/dx= -dy/dt,
于是原方程可以变换为:
d^2y/dt^2 +y=0
这种解法是否正确?
d^2y/dx^2
= [d(dy/dx) /dt] * dt/dx
= [-e^t *d^2y/dt^2 -e^t *dy/dt] * (-e^t)
这步又是怎么得到的?
答
d^2y/dx^2
=d(dy/dx)/dx
=(d(dy/dx)dt)/(dx/dt)
然后代入就行了.代入以后怎么会出现了[-e^t *d^2y/dt^2 -e^t *dy/dt]呢,怎么会出现两项的=(d(-e^t dy/dt)dt)/(-e^(-t))=[(-e^t)d^2y/dt^2+(-e^t)dy/dt]/(-e^(-t))(把dy/dt看成一个函数就利用关于函数乘积的求导得到的)=[-e^t *d^2y/dt^2 -e^t *dy/dt] * (-e^t)