在等腰梯形ABCD中,AD∥BC,AB=DC,AD=3,AB=4,∠B=60°,求梯形的面积

问题描述:

在等腰梯形ABCD中,AD∥BC,AB=DC,AD=3,AB=4,∠B=60°,求梯形的面积

过A作AE⊥BC于E,过D作DF⊥BC于F,
∵∠B=60°,AB=4,∴BE=2,同理CF=2,
又∵AD=3 ∴BC=7
则AE=√(4²-2²)=2√3
梯形的面积=1/2(上底+下底)×高
=1/2×(3+7)×2√3
=10√3