(1/2)若数列(Xn )满足lgX(n+1)=1+lgXn (n 属于正整数)且X1+ X2+…+X99+X100=100 则lg(X101

问题描述:

(1/2)若数列(Xn )满足lgX(n+1)=1+lgXn (n 属于正整数)且X1+ X2+…+X99+X100=100 则lg(X101

lgx(n+1)=1+lgxnx(n+1)=10xn公比为10x1+x1q+x1q^2+……+x1q^99=100x101+x102+x103+.x200=x1q^100+x1q^101+……+x1q^199=q^100(x1+x1q+x1q^2+……+x1q^99)=10^100*100=10^102原式=102