(1/2)若数列(Xn )满足lgX(n+1)=1+lgXn (n 属于正整数)且X1+ X2+…+X99+X100=100 则lg(X101

问题描述:

(1/2)若数列(Xn )满足lgX(n+1)=1+lgXn (n 属于正整数)且X1+ X2+…+X99+X100=100 则lg(X101

lgx(n+1)=1+lgxn 即:lgXn+1=lg10Xn即:Xn+1=10Xn,所以数列{Xn}为等比数列,公比为10
x1+x2+...+x100=100
所以x101+x102+...+x200=10^100(x1+x2+...+x100)=10^100*100=10^102
原式=102