如图,在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别为D、E,猜想图中线段DE、AE、DB之间的关系,并说明理由.
问题描述:
如图,在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别为D、E,猜想图中线段DE、AE、DB之间的关系,并说明理由.
答
DE+AE=DB(2分)说理(7分)
∵∠ACB=90°,BD⊥CE
∴∠ACE+∠ECB=90°,∠ECB+∠CBD=90°
∴∠ACE=∠CBD (1分)
又∵AE⊥CE
∴∠AEC=90°
在Rt△AEC和Rt△CDB中
AC=BC,∠AEC=∠CDB=90°,∠ACE=∠CBD (2分)
∴Rt△AEC≌Rt△CDB (3分)
∴AE=CD,EC=DB (5分)
又∵DE+DC=EC
∴DE+AE=DB. (7分)