在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,求S=x+y的最大值.

问题描述:

在平面直角坐标系xOy中,点P(x,y)是椭圆

x2
3
+y2=1上的一个动点,求S=x+y的最大值.

因椭圆

x2
3
+y2=1的参数方程为
x=
3
cosϕ
y=sinϕ
(ϕ为参数)
故可设动点P的坐标为(
3
cosϕ,sinϕ)
,其中0≤ϕ<2π.
因此S=x+y=
3
cosϕ+sinϕ=2(
3
2
cosϕ+
1
2
sinϕ)=2sin(ϕ+
π
3
)

所以,当ϕ=
π
6
时,S取最大值2.