A,B均为n节可逆方阵,且(AB)^2=E

问题描述:

A,B均为n节可逆方阵,且(AB)^2=E
1、我能由此得到AB=BA吗,为什么?按照定义是说A可逆,则存在C使AC=CA=E;B可逆则存在D使BD=DB=E;A,B同届均可逆,则AB可逆,则存在M,使ABM=MBA=E,我觉得得不到这个结论,因为我感觉两个独立的矩阵是否可逆和这两个矩阵可不可交换没关系,
2、我能由此得到AB=E吗,为什么

(AB)^2=E,只能得到(AB)^(-1)=AB,(BA)^(-1)=BA
等不到AB=BA.一般可交换相乘的:互为逆矩阵;方阵乘以数量阵
也得不到AB=E.逆矩阵等于原阵的常见.
举个例子吧
0 1 0 0 0 1
A= 0 0 1 B= 0 1 0
1 0 0 1 0 0
1 0 0 1 0 0
AB=0 0 1 BA=0 0 1
0 1 0 0 1 0