an=2n+2^(n+1) 求数列an的前n次项和,即sn!
问题描述:
an=2n+2^(n+1) 求数列an的前n次项和,即sn!
答
a1=2*1+2^2
a2=2*2+2^3
a3=2*3+2^4
.
an=2n+2^(n+1)
sn=2*1+2^2+2*2+2^3+2*3+2^4+.+2n+2^(n+1)
=2*(1+2+3+...+n)+2^2+2^3+2^4+...+2^(n+1)
=2*(n+1)*n/2+4*(1-2^n)/(1-2)
=n(n+1)+4*2^n-4
=n(n+1)+2^(n+2)-4