.a(a+1)分之1+(a+1)(a+2)分之1+(a+2)(a+3)+``````+(a+2004)(a+2005)分之1

问题描述:

.a(a+1)分之1+(a+1)(a+2)分之1+(a+2)(a+3)+``````+(a+2004)(a+2005)分之1

1/(a+n)(a+n+1)=1/(a+n)-1/(a+n+1)
a(a+1)分之1+(a+1)(a+2)分之1+(a+2)(a+3)+``````+(a+2004)(a+2005)分之1
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+.+1/(a+2004)-1/(a+2005)
=1/a-1/(a+2005)
=2004/(a^2+2005a)