△的两个外角的平分线交于点P则∠D=90°-二分之一∠A

问题描述:

△的两个外角的平分线交于点P则∠D=90°-二分之一∠A

设△ABC的∠B和∠C的外角平分线交于D,在△DBC中∠DBC=(180°-∠ABC)/2=90°-∠ABC/2,
∠DCB=(180°-∠ACB)/2=90°-∠ACB/2.于是∠D=180°-(90°-∠ABC/2)-(90°-∠ACB/2)
=∠ABC/2+∠ACB/2=(∠ABC/2+∠ACB/2+∠A/2)-∠A/2=90°-∠A/2.