已知矩阵E+AB可逆,求证E+BA也可逆
问题描述:
已知矩阵E+AB可逆,求证E+BA也可逆
并求证(E+BA)-1=E-B[(E+AB)-1]A 不会打求逆符号 将就看吧
答
C=(E+AB)^(-1)
(E-BCA)(E+BA)=E-BCA+BA-BCABA=
=E+B[-C+E-CAB]A=E+B[E-C(E+AB)]A=E
==>
E+BA可逆,且(E+BA)^(-1)=E-BCA.