设A、B是n阶矩阵,且I+AB可逆,求证I+BA也可逆,且 (I+BA)^1=I-B(I+AB)^1A.
问题描述:
设A、B是n阶矩阵,且I+AB可逆,求证I+BA也可逆,且 (I+BA)^1=I-B(I+AB)^1A.
答
因为I+AB可逆所以(I+AB)(I+AB)^(-1)=I(I+AB)^(-1)+AB(I+AB)^(-1)=IB(I+AB)^(-1)+BAB(I+AB)^(-1)=B(I+BA)[B(I+AB)^(-1)]=B(I+BA)[B(I+AB)^(-1)]A=BA(I+BA)[B(I+AB)^(-1)A]+I=BA+I(I+BA)[I-B(I+AB)^(-1)A]=I所以I+BA也...