已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.

问题描述:

已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.求证|OP|·|OQ|为定值

解法一 利用参数方程:设任一点M(acost,bsint) 短轴两端点A(0,b),B(0,-b) MA交x轴于P(x1,0),MB交x轴于Q(x2,0) b/x1=(b-bsint)/acost x1=acost/(1-sint) bsint/(acost-x2)=b/x2 x2=acost/(1+sint) |OP|*|OQ|=|x1|*|x2...