tanα=a,求(3sinα+sin3α)/(3cosα+cos3α)的值
问题描述:
tanα=a,求(3sinα+sin3α)/(3cosα+cos3α)的值
答
(3sina+sin3a)/(3cosa+cos3a)
=(3sina+3sina-4sin^3a)/(3cosa+4cos^3a-3cosa)
=(6sina-4sin^3a)/(4cos^3a)
=3/2tana*1/cos^2a-tan^3a
=3/2a*(1+tan^2a)-a^3
=3/2a+3/2a^3-a^3
=3/2a+a^3/2