f(x)=log2(x-1),h(x)=f(x)+m/f(x),是否存在正实数m,使h(x)在[3,9]上取得最小值为4
问题描述:
f(x)=log2(x-1),h(x)=f(x)+m/f(x),是否存在正实数m,使h(x)在[3,9]上取得最小值为4
f(x)=log2(x-1),h(x)=f(x)+m/f(x),是否存在正实数m,使h(x)在[3,9]上取得最小值为4?若存在,求出m值;若不存在,请说明理由.
答
f(x)=log2(x-1)在[3,9]上的值域为[1,3].根据不等式a+b≥2√(ab) [a,b>0;当a=b时,a+b=2√(ab)]知:h(x)=f(x)+m/f(x)≥2√[f(x)·m/f(x)]=2√m,即h(x)的最小值为2√m.当2√m=4时,m=4.当f(x)+m/f(x)取得最小值时,f(x)...