答
(1)∵f(x)=+lnx−1,
∴f′(x)=−+=
令f'(x)=0,得x=a.
①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.
②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减,
当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增,
所以当x=a时,函数f(x)取得最小值lna
③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减,
所以当x=e时,函数f(x)取得最小值.
.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;
当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;
当a≥e时,函数f(x)在区间(0,e]上的最小值为.
(2)∵g(x)=(lnx-1)ex+x,x∈(0,e],
∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=+(lnx−1)ex+1=(+lnx−1)ex+1.
由(1)可知,当a=1时,f(x)=+lnx−1.
此时f(x)在区间(0,e]上的最小值为ln1=0,即+lnx−1≥0.(10分)
当x0∈(0,e],ex0>0,+lnx0−1≥0,
∴g′(x0)=(+lnx0−1)ex0+1≥1>0.
曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g'(x0)=0有实数解.(13分)
而g'(x0)>0,即方程g'(x0)=0无实数解.、故不存在x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.