在△ABC中,AE是BC上的中线,F为AE上任意一点,连结CF并延长交AB于D,试说明AD/AB=DF/FC
问题描述:
在△ABC中,AE是BC上的中线,F为AE上任意一点,连结CF并延长交AB于D,试说明AD/AB=DF/FC
答
过D作DN//BC,交AE于M,
〈DAN=〈BAC,
〈ADN=〈ABC,(同位角相等)
△ADN∽△ABC,
AD/AB=DN/BC,
同理,DM/BE=AM/AE,
MN/EC=AM/AE,
DM/BE=MN/EC,
而BE=CE,
故DM=MN,
故AD/AB=DM/CE,
〈MDF=〈ECF,(内错角相等),
〈DFM=〈CFE,(对顶角相等),
△DMF∽△CEF,
故DF/CF=DM/CE,
故AD/AB=DF/CF.