一个定义域为R的奇函数,一定过原点吗?
问题描述:
一个定义域为R的奇函数,一定过原点吗?
如果不一定,那么当这个函数的定义域为R时,满足什么条件会使它恒过原点,这个条件是它是连续函数吗?
答
一个定义域为R的奇函数,一定过原点.证明:因为奇函数,所以f(-x)=-f(x)恒成立,所以f(0)=-f(0),所以f(0)=0,所以图像必然过原点.